奇奇怪怪的线代题(1)
一些奇奇怪怪的线代题
A.行列式
1.计算\(n\)阶行列式
$$ D_n = | \[\begin{array}{cccc} 2\cos x &1 & 0 & \dots &0&0\\ 1 &2\cos x & 1 & \dots &0&0\\ 0 &1 &2\cos x & \dots &0&0\\ \vdots & \vdots & \vdots & &\vdots & \vdots \\ 0 &0 & 0 & \dots &2\cos x&1\\ 0 &0 & 0 & \dots &1&2 \cos x\\ \end{array}\]|. $$
将其按第一行展开:
$$ D_n = | \[\begin{array}{cccc} 2\cos x &1 & 0 & \dots &0&0\\ 1 &2\cos x & 1 & \dots &0&0\\ 0 &1 &2\cos x & \dots &0&0\\ \vdots & \vdots & \vdots & &\vdots & \vdots \\ 0 &0 & 0 & \dots &2\cos x&1\\ 0 &0 & 0 & \dots &1&2 \cos x\\ \end{array}\] | \=2x | \[\begin{array}{cccc} 2\cos x &1 & \dots &0&0\\ 1 &2\cos x & \dots &0&0\\ \vdots & \vdots & &\vdots & \vdots \\ 0 &0 & \dots &2\cos x&1\\ 0 &0 & \dots &1&2 \cos x\\ \end{array}\] | - | \[\begin{array}{cccc} 1 &1 & \dots &0&0\\ 0 &2\cos x & \dots &0&0\\ \vdots & \vdots & &\vdots & \vdots \\ 0 &0 & \dots &2\cos x&1\\ 0 &0 & \dots &1&2 \cos x\\ \end{array}\]|\= 2D_{n-1} - D_{n-2} $$
因此\(D_n\)为二阶线性递推数列,求特征根得
\[ \lambda_1=\cos x + i\sin x,\lambda_2=\cos x-i\sin x \]
结合\(D_1=2\cos x\)以及\(D_2 = 4\cos^2 x - 1\)得
\[ D_n = \cos nx + \cot x\sin nx. \]
2.计算n阶行列式
$$ D_n = | \[\begin{array}{cccc} 1 &1 & \dots &1\\ x &x &\dots&x\\ x^2 &x^2&\dots &x^2\\ \vdots & \vdots & & \vdots \\ x^{n-2} &x^{n-2}&\dots &x^{n-2}\\ x^n &x^n & \dots &x^n\\ \end{array}\]|. $$
考虑\(n+1\)阶范德蒙德行列式
$$ | \[\begin{array}{cccc} 1 &1 & \dots &1&1\\ x &x &\dots&x&y\\ x^2 &x^2&\dots &x^2&y^2\\ \vdots & \vdots & & \vdots &\vdots\\ x^{n-2} &x^{n-2}&\dots &x^{n-2}&y^{n-2}\\ x^{n-1} &x^{n-1}&\dots &x^{n-1}&y^{n-1}\\ x^n &x^n & \dots &x^n&y^n\\ \end{array}\]|={k=1}^n(y-x_k){1j<in}(x_i-x_j) $$
按第\(n+1\)列展开:
\[ D_{n+1} = A_{1,n+1} + yA_{2,n+1}+\dots +y^{n-1}A_{n,n+1}+y^nA_{n+1,n+1} \]
并注意到
\[ A_{n,n+1} = -D_n \]
以及
\[ \prod \limits_{k=1}^n(y-x_k) = y^n-y^{n-1}\sum_{k=1}^{n}x_k+\dots +(-1)^n\prod_{k=1}^{n}x_k \]
从而
\[ D_n = \sum_{k=1}^{n}x_k\prod_{1\le j<i\le n}(x_i-x_j). \]
B.证明题
设\(\{\alpha _i\}\)为\(n-1\)个线性无关的\(n\)维向量组,\(\xi _1,\xi_2\)为与该向量组向量均正交的两个\(n\)维列向量,证明:\(\xi _1,\xi_2\)线性相关。
证明:将 $_1 $ 添入向量组中,考虑到正交即线性无关,包含 \(\xi _1\) 的向量组即为空间的一组基,并设 \(\xi_1\) 在该组基下的坐标表示为\((k_1,k_2,\dots k_n)\)即有
\[ \xi_1 ^T\xi _2 =(\sum_{i=1}^{n-1}k_i\alpha_i^T+k_n\xi_2^T)\xi _2=k_n\xi_2^T\xi_2 \]
以及
\[ \xi_1 ^T\xi _1 =(\sum_{i=1}^{n-1}k_i\alpha_i^T+k_n\xi_2^T)\xi _1=k_n\xi_2^T\xi_1 \]
从而有
\[ \frac{\xi_1 ^T\xi _2 }{\xi_2^T\xi_2}=\frac{\xi _1^T \xi_1}{\xi_2^T\xi_1} \]
写成内积的形式:
\[ ||(\xi_1, \xi_2)||^2 =(||\xi_2||^2)(||\xi _1||^2) \]
此即欧氏空间的柯西不等式等号成立的情况,当且仅当\(\xi_1,\xi_2\)线性相关。\(\square\)